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1. Abstract

In this paper, a new technique is proposed for field effect tran-

sistor (FET) small-signal modeling using neural networks. This

technique is based on the combination of the Mel-frequency

Cepstral Coefficients (MFCCs) with the different discrete

transforms such as the discrete cosine transform (DCT), the

discrete sine transform (DST), and the discrete wavelet trans-

form (DWT) of the inputs to the neural networks. The input

data sets to traditional neural systems for FET small-signal

modeling are the scattering parameters and the corresponding

frequencies in a certain band, and the outputs are the circuit

elements. In the proposed approach, these data sets are

considered as forming random signals. The MFCCs of the

random signals are used to generate a small number of features

characterizing the signals. In addition, other vectors are

calculated from the DCT, the DST, or the DWT of the random

signals and appended to the MFCCs vectors calculated from

signals. The new feature vectors are used to train the neural

networks. The objective of using these new vectors is to char-

acterize the random input sequences with much more features

to be robust against measurement errors. There are two benefits

for these approaches: a reduction in the number of neural

networks input, hence a faster convergence of the neural training

algorithm and robustness against measurement errors in the

testing phase. Experimental results show that the techniques

based on the discrete transforms are less sensitive to measure-

ment errors than using the traditional and MFCCs methods.

Key words: MFCCs, Neural networks, DST, FET, DWT, DCT.

2. Resumen (Nueva técnica para el transistor de efecto de

campo (FET) de pequeña señal modelado con redes neuronales)

En este trabajo se propone una nueva técnica para el transistor

de efecto de campo (FET) de pequeña señal de modelado con

redes neuronales. Esta técnica se basa en la combinación de

los coeficientes de frecuencia Mel Cepstral (MFCC) con las

diferentes transformaciones discretas, tales como la transfor-

mada discreta del coseno (DCT), la transformada discreta del

seno (DST), y la transformada discreta wavelet (DWT) de la

entrada a las redes neuronales. Los datos de entrada a los sis-

temas tradicionales conjuntos neuronales para el FET de pe-

queña señal de modelado son los parámetros de dispersión y

las frecuencias correspondientes en una determinada banda, y

las salidas son los elementos del circuito. En el enfoque pro-

puesto, este conjunto de datos son considerados como consti-

tutivos de señales aleatorias. El MFCC de las señales aleatorias

se utiliza para generar un pequeño número de rasgos que ca-

racterizan las señales. Además, otros vectores se calculan a

partir de la DCT, de DST, o la DWT de la señal al azar y se

añade a los vectores MFCC calculados a partir de las señales.

Los vectores de características nuevas se utilizan para entre-

nar las redes neuronales. El objetivo de la utilización de estos

nuevos vectores es la caracterización de las secuencias de en-

trada al azar con características mucho más para ser robustos

frente a errores de medición. Hay dos ventajas de estos enfo-

ques, una reducción en el número de entradas de las redes

neuronales y, por lo tanto, una convergencia más rápida del

algoritmo de entrenamiento neural y robustez frente a errores

de medición en la fase de pruebas. Los resultados experimen-

tales muestran que las técnicas basadas en las transformacio-

nes discretas son menos sensibles a los errores de medición

que el uso de los métodos tradicionales y MFCC.

Palabras clave: MFCC, redes neuronales, DST, DWT FET, DCT.
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3. Introduction

Knowledge of the equivalent circuit of a FET is very useful for

the device performance analysis. Therefore, it is very important

to use efficient tools to predict the small-signal circuit

elements. Two major solution categories have been proposed

by researchers to solve the small-signal modelling problem

of transistors. The first trend is based on the direct extraction of

small-signal circuit elements through analytic solutions [1-4].

This trend is very complicated, because it depends on finding

closed form expressions to relate the scattering parameters

of the FET to the small-signal circuit elements.

The second trend is directed towards optimizing the component

values to closely fit the small-signal microwave scattering

parameters measured or published for the device [5-8].

However, the equivalent circuit determination needs accurate

broad-band S-parameters measurements. In fact, there are

inherent errors in vector network analyzer measurements,

which can not be avoided easily. Therefore, there is a need for

a new approach, which is more robust to errors in the scattering

parameters measurements.

Several modeling approaches based on artificial neural

networks and belonging to the second category of solutions

have been presented in literature [9-11]. Neural networks have

the ability to simulate nonlinear relations with high accuracy.

They can achieve a trade-off between efficiency and accuracy.

Based on these advantages of neural networks, they found a

great popularity in modeling the nonlinear relations between

the measured or published FET scattering parameters and the

values of the small-signal circuit elements. The traditional ap-

proach for this purpose is to build a single neural network to

relate all the measured scattering parameters to the small-signal

circuit elements, but this approach is time consuming and does

not guarantee convergence in the training phase of the neural

network.

In this paper, the MFCCs of the neural inputs in the traditional

method and the MFCCs of their DCTs, DSTs, and DWTs are

extracted and concatenated to form feature vectors to be used

as the new neural input vectors.  The paper presents a study

of the sensitivity of the traditional and the proposed neural

models to measurement errors in the testing phase. The paper

is organized as follows. Section 4 gives the basics of neural

small-signal modeling. Section 5 gives the small-signal model

for the metal semiconductor field effect transistor (MESFET)

that will be used throughout the paper. Section 6 presents

the proposed technique for FET small-signal modeling.

Section 7 gives the experimental results. Finally, Section 8

gives the concluding remarks.

4. Neural small-signal modeling

Artificial neural networks are programming paradigms that

seek to emulate the microstructure of the brain, and they are

used extensively in artificial intelligence problems from sim-

ple pattern-recognition tasks to advanced symbolic manipu-

lation. Generally, artificial neural networks are basic input and

output devices, with the neurons organized in layers. They

have the ability to model nonlinear relations such as the

relations between the scattering parameters and the small-

signal circuit elements in FETs. Several neural structures can

be implemented for this purpose. The multilayer perceptron

(MLP) network is one of such configurations [12,13]. It is a

feed-forward artificial neural network that maps sets of input

data onto a set of appropriate outputs. A standard MLP neural

network is shown in Fig. 1. It consists of an input and an

output layer with one or more hidden layers of nonlinearly-

activated nodes. Each node in a layer connects with a certain

weight w
ij
 to every other node in the following layer, but there

are no connections between the same layer neurons.

An MLP with one hidden layer can be used for FET small-

signal modeling. The sigmoid function F(u) = 1/(1+ e−u ) can

be used as an activation function for the hidden layer, and the

neurons from the input and output layers can have linear

activation functions. Let X be the input vector to a single hidden

layer neural network, the output vector Y can be obtained

according to the following matrix equation [12, 13]:
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Fig. 1. Standard MLP neural network.
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       Y = W
2
 * F(W

1
 * X + B

1
) + B

2
                   (1)

where W
1
 and W

2
 are weight matrices between the input

layer and the hidden layer and between the hidden layer and

the output layer, respectively. B
1
 and B

2
 are bias matrices for

the hidden layer and the output layer, respectively. The neural

network learns the relationship among sets of input/output

data (training sets), that represents the characteristics of the

component under consideration. First, input vectors are

presented to the input neurons and output vectors are computed.

These output vectors are then compared with desired values

and errors are computed. Error derivatives are calculated and

summed up for each weight and bias until the whole training

set has been presented to the network. These error derivatives

are then used to update the weights and biases for neurons in

the model. The training process proceeds until errors become

lower than the prescribed values or until the maximum number

of epochs is reached. Once a neural network is trained, its

structure remains unchanged, and it will be capable of

predicting outputs for all inputs whether they have been used

for the training or not.

5. FET small-signal models

Many researchers are interested in FET small-signal modeling.

They introduced several models. Of such models, the model

of the Mimix CF001-01 MESFET published in its datasheet

in 2008. This model is illustrated in Fig. 2. This model is

valid up to 26 GHz.
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ps, Cds = 0.12 pF, Rds = 161 Ω, Rd  = 1.3 Ω, Ld = 0.21 nH, Rs

=1.1 Ω, Ls = 0.04 nH.

Using all the data in Table 1 as inputs for the neural network

and the circuit elements as outputs in a single neural structure

as in the traditional methods causes two problems. First

problem is that the amount of data will be very large. Second

one is that the convergence will not be guaranteed. Thus, all

the proposed techniques will be used to achieve convergence

and reduce the amount of input data. The steps of the proposed

techniques can be summarized as follows:

1. Calculate the MFCCs for the original input data considering

it as a random signal.
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Table 1. S-parameters for which, the values of the small-signal elements of the CF001-01.

f (GHz)

2

4

6

8

10

12

14

16

18

20

22

24

26

Mag.

0.98

0.93

0.88

0.84

0.79

0.79

0.78

0.78

0.77

0.76

0.79

0.78

0.81

Angle

−24º
−51º
−72º
−98º

−122º
−140º
−154º
−166º
178º

159º

141º

132º

129º

Mag.

4.56

4.31

3.83

3.47

2.99

2.64

2.41

2.27

2.16

2.04

1.82

1.52

1.31

Angle

156º

136º

118º

100º

82º

67º

55º

44º

30º

15º

−2º
−13º
−21º

Mag.

0.02

0.04

0.05

0.06

0.06

0.07

0.07

0.07

0.08

0.09

0.09

0.09

0.09

Angle

73º

62º

51º

38º

23º

18º

10º

5º

−2º
−13º
−20º
−21º
−19º

Mag.

0.53

0.5

0.48

0.43

0.38

0.38

0.39

0.36

0.32

0.27

0.27

0.3

0.39

Angle

−10º
−25º
−35º
−51º
−68º
−83º
−93º

−101º
−113º
−131º
−163º
176º

168º

S
11

S
21

S
12

S
22

Fig. 2. The model of CF001-01MESFET.

6. Proposed neural modeling

techniques

A direct approach to generate a neural model

for a MESFET is to use the frequency values,

the magnitude and the phase of the S-

parameters as inputs to a single MLP neural

network and the circuit elements as the

outputs. In the proposed techniques, we take

the parameters of the CF001-01 MESFET

shown in Table 1 as inputs to several neural

networks and the circuit elements as outputs

for each network, separately. A training

process can be performed with these data

sets or other data sets.

Table (1) Published S-parameters for

which, the values of the small-signal

elements of the CF001-01 are given by

Lg= 0.19 nH, Rg = 1 Ω, Cgs = 0.32 pF, Ri =

1.9 Ω, Cgd = 0.023 pF, Gm = 66 mS, τ = 2.7
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2. Calculate the DCT, DST or DWT for the original data.

3. Calculate the MFCCs for the outputs of step 2.

4. Make a concatenation between the two vectors obtained

from steps 1 and 3.

5. In the training phase, use the output of step 4 with each

circuit element of the training set to train a neural network

belonging to this element.

6. In the testing phase, steps 1 to 4 are performed on the

measured S-parameters with measurement errors and the

resulting vectors are used to predict the circuit elements

with their neural networks.

The MFCC technique is used to reduce the amount of input

data as all the inputs are replaced by a small number of

MFCC. Measurement errors are similar in nature to random

noise. It is known in speaker identification, that the MFCC

can be used to characterize speech signals in the presence of

noise rather than using all the signal samples in the identi-

fication process. The same idea is exploited here considering

the measurement errors as noise. Extracting the MFCC from

the DCT, DST or DWT of the neural inputs can add more

features to characterize the neural inputs in the presence of

measurement errors leading to more robust modeling.

6.1. The discrete cosine transform

The DCT expresses a sequence of finite data points in terms

of a sum of cosine functions oscillating at different cosine

frequencies. It is defined for a sequence of samples x(n) by

the following equation [14]:

(2)

where

The DCT has a sophisticated characteristic of energy

compaction by collecting most of the signal energy in a few

samples leaving the other samples very small. This char-

acteristic can be exploited in our work to reduce the effect of

measurement errors.

6.2. The discrete sine transform

The DST is a mathematical transform that uses sine functions

oscillating at different frequencies to transform time signals

into a different domain. It is defined a sequence of samples

x(n) by the following equation [14-16]:

(3)

The MFCC will be extracted from X(k) to add more features

to those extracted from x(n). The concatenation of the feature

vectors extracted from x(n) and X(k) will give a more robust

feature vector to characterize x(n),  even in the presence of

measurement errors in the testing phase.

6.3. The discrete wavelet transform

The DWT is a very popular tool for the analysis of non-

stationary signals. It can be regarded as equivalent to filtering

the signal with a bank of bandpass filters, whose impulse

responses are all approximately given by scaled versions of a

mother wavelet. The scaling factor between adjacent filters

is usually 2:1 leading to octave bandwidths and center

frequencies that are one octave apart [17-30].  The outputs

of the filters are usually maximally decimated so that the

number of DWT output samples equals the number of input

samples, and thus no redundancy occurs in this transform.

The one level DWT decomposition-reconstruction filter bank

is shown in Fig. 3.

The art of finding a good wavelet lies in the design of the

set of filters H0, H1, G0  and G1 to achieve various tradeoffs

between spatial and frequency domain characteristics while
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k = 0,..., N−1X(k) = w(k) Σ
N−1 π(2n − 1)(k − 1)

2Nn=0

x(k) cos

k = 1,..., N−1

w(k) =

1

N

k = 0

2

N

X(k) = Σ
N−1 πkn

N+ 1n=0

x(k) sin k = 0,..., N−1

Fig. 3. The two band decomposition-reconstruction wavelet
filter bank.
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satisfying the perfect reconstruction (PR) condition [29].

In Fig. 3, the process of decimation and interpolation by

2:1 at the output of H0 and H1 effectively sets all odd samples

of these signals to zero. For the lowpass branch, this is

equivalent to multiplying x
0
(n) by 1/2(1 + (−1)n). Hence

X0(z) is converted to 1/2{X0(z) + X0(−z)}. Similarly, X1(z) is

converted to 1/2{X1(z) + X1(−z)}.

Thus, the expression for Y(z) is given by [29]:

(4)

The first PR condition requires aliasing cancellation and

forces the above term in X(−z) to be zero. Hence,

{H0(−z)G0(z) + H1(−z)G1(z)}=0,

which can be achieved if [29]:

H1(z) = z−kG0(−z) and G1(z) = zkH0(−z)              (5)

where k must be odd (usually k = ±1).

The second PR condition is that the transfer function from

X(z) to Y(z)  should be unity [26]:

        {H0(z)G0(z) + H1(z)G1(z)}= 2                    (6)

If we define a product filter P(z) = H0(z)G0(z)  and substitute

from Eq. (5) into Eq.(6), then the PR condition becomes [29]:

          H0(z)G0(z) + H1(z)G1(z)}= P(z) + P(−z) = 2          (7)

This needs to be true for all z and, since the odd powers of z

in P(z) cancel with those in P(−z), it requires that p0 = 1 and

pn = 0 that for all n even and non-zero. The polynomial P(z)

should be a zero phase polynomial to minimize distortion.

In general, P(z) is of the following form [29]:

P(z) = ...+ p
5
z5 + p

3
z3 + p

1
z + 1 + p

1
z−1 + p

3
z−3 +p

5
z−5 +... (8)

The design method for the PR filters can be summarized in

the following steps [26]:

1. Choose p
1
, p

3
 , p

5
,... to give a zero phase polynomial P(z)

with good characteristics.

2. Factorize P(z) into H0(z) and G0(z) with similar lowpass

frequency responses.

3. Calculate H1(z) and G1(z) from H0(z) and G0(z).

To simplify this procedure, we can use the following relation:

P(z) = P
t
(Z) = 1 + p

t,1
Z + p

t,3
Z + p

t,5
Z +...        (9)

where Z = 1/2 (z + z−1)

The Haar wavelet is the simplest type of wavelets. In the

discrete form, Haar wavelets are related to a mathematical

operation called the Haar transform. The Haar transform

serves as a prototype for all other wavelet transforms [26].

Like all wavelet transforms, the Haar transform decomposes

a discrete signal into two sub-signals of half its length. One

sub-signal is a running average or trend; the other sub-signal

is a running difference or fluctuation. This uses the simplest

possible P
t
(Z ) with a single zero at Z = −1. It is represented

as follows [29]:

   P
t
(Z) = 1+

 
Z   and   Z = 1/2 (z + z−1)    (11)

thus

 P(z) = 1/2 (z + 2 + z−1) = 1/2 (z + 1)(1+ z−1) = G0(z)H0(z)

(12)

We can find H0(z) and G0(z) as follows:

H0(z) = 1/2 (1+ z−1)                              (13)

G0(z) = (z + 1)                          (14)

Using Eq.(5) with k=1:

           G1(z) = zH0(−z) = 1/2 z(1+ z−1) = 1/2 (z − 1)        (15)

           H1(z) = z−1G0(−z) = z−1(−z + 1) = (z−1− 1)             (16)

The two outputs of H0(z) and H1(z) are concatenated to form a

single vector of the same length as the original input signal.

The features are extracted from this vector and added to the

feature vector generated from the original input signal to form

a large feature vector. The wavelet transformed signal vector

contains both the approximation and the detail coefficients of

the input signal formed from the neural inputs. So, feature

extraction from this vector gives features from the lowpass as

well as the highpass components of the signal which are more

robust features to the presence of measurement errors.

6.4. Extraction of the MFCC

The MFCC of a data sequence are a representation of the

short-term coefficients derived from a type of cepstral trans-

formation of this data sequence.  Calculating the MFCCs of
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Y(z) =    {X0(z) + X0(−z)}G0(z) +    {X1(z) + X1(−z)}G1(z)

Y(z) =     X(z){H0(z)G0(z) + H1(z)G1(z)}

+      X(−z){H0(−z)G0(z) + H1(−z)G1(z)}

1

2

1

2

1

2

1

2
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a data sequence x(n), the DFT of the sequence is computed

to obtain the magnitude spectrum as follows [31,32]:

(17)

The magnitude spectrum |X(k)| is now scaled in both

frequency and magnitude. First, the frequency is scaled

logarithmically using the so-called Mel filter bank H(k,m),

and then the logarithm is taken, giving:

(18)

for m=1, 2,…., M, where M is the number of filter banks and

M << N.

The Mel filter bank is a collection of triangular filters defined

by center frequencies calculated on the Mel scale [31,32].

The triangular filters are spread over the entire frequency

range from zero to the Nyquist frequency.  Finally, the MFCCs

are obtained by computing the DCT of   using [31,32]:

(19)

7. Experimental results

In this section, several experiments are carried out to test the

proposed techniques for FET small-signal modeling. The

experiments are carried out on the CF001-01 GaAs MESFET

model. The published S-parameters for this model are tabulated

in Table 1.

Five methods are tested for creating neural models to estimate

the small-signal circuit elements from the published parameters.

These methods are the traditional neural network modeling

method using all published data as inputs, the proposed method

using the MFCCs of the published data, and the proposed

methods using a concatenation of the MFCCs obtained from

the original data and the MFCCs obtained from one of the

discrete transforms; the DCT, the DST or the DWT of this data.

For all the experiments, a neural network is created through

training to relate each circuit element to the neural inputs,

whether they are the published data or features extracted from

this data.

The number of epochs required in the training phase for each

method are tabulated in Tables 2 and 3. From these tables, it

is clear that the number of epochs required for creating the

neural networks is lower for the discrete transforms methods

than that for the traditional method in most cases, which

reveals that the proposed methods are time saving.

In the testing phase, the neural networks are tested with input

data subject to measurement errors. The measurement errors

are simulated as uniformly distributed random errors added to
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Table 2. The number of epochs required in each method for the intrinsic
elements of the CF001-01 model.

Method of Estimation

Traditional Method

MFCC Method

DCT Method

DST Method

DWT Method

Cga

2315

463

13

11

13

Ri

239

9

20

172

100

Cgd

800

311

1210

    28

557

gm

1050

500

931

445

97

τ
1199

17

5

4

6

Cda

1349

2017

884

15

534

Rda

815

167

91

15

10 000

Table 3. The number of epochs required in each method for the extrinsic
elements of the CF001-01 model.

Method of Estimation

Traditional Method

MFCC Method

DCT Method

DST Method

DWT Method

Lg

1457

700

10

24

33

Rg

310

28

9

235

10

Ld

1860

2448

6

    117

39

Rd

3044

16

2487

13

6

Ls

889

451

580

11

603

Rs

3250

258

5

9

15

the published data. A comparison study is held

between the sensitivity of the five methods to

the measure-ment errors in the published

parameters. The results of this comparison

study for all elements are given in Fig.(4) from

(a) to (m). In these experiments, each circuit

element is estimated using its created neural

networks for all methods with errors having a

uniform distribution added to the neural

inputs. Since the errors in all neural inputs

are not fixed, the maximum percentage error

among the neural inputs is taken as the hori-

zontal axis and the percentage error in the

estimated value of the circuit element is taken

as the vertical axis.

Figure 4 shows that the methods based on

the MFCCs with the discrete transforms of

the inputs are more robust to measurement

errors than the traditional method and

MFCCs method only. We notice from the fi-

gure that the use of the MFCCs with the DCT

is the best method for most cases.

X(k) = Σ
N−1

n=0

x(n)e −j2πkn/N

X’(k) = ln Σ
N−1

k=0

|X(k)|H(k,m)

c
l
 = X’(m) cosΣ

m=1

π
M

l m − 1
2

M
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Fig. 4. Variation of the estimation error of all elements with the percentage error in measured values for all methods.
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8. Conclusion

This paper presented a new approach for FET small-signal

modelling. This approach is based on estimating the MFCCs

of the available data set of S-parameters and frequencies and

the MFCCs of one of the discrete transforms of the data set,

and using them for neural training and testing. The advantages

of this approach are a reduction in the neural networks size

and storage capacity, a reduction in the training time and a

large immunity to measurement errors in the testing phase.
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